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This paper considers the linear inviscid reflexion of internal/inertial waves from 
smooth bumpy surfaces where a characteristic (or ray) is tangent to the surface 
at  some point. There are two principal cases. When a characteristic associated with 
the incident wave is tangent to the surface we have diffraction; when the tangen- 
tial characteristic is associated with a reflected wave we have split reflexion, a 
phenomenon which has no counterpart in classical non-dispersive wave theory. 
In  both these cases the problem of determining the wave field may be reduced to 
a set of coupled integral equations with two unknown functions. These equations 
are solved for the simplest topography for each case, and the properties of the 
wave fields for more general topographies are discussed. For both split reflexion 
and diffraction, the fluid velocity has an inverse-square-root singularity on the 
tangential characteristic, and the energy density has a corresponding logarithmic 
singularity. The diffracted wave field penetrates into the shadow region a dis- 
tance which is of the order of the incident wavelength. Possibilities for instability 
and mixing are discussed. 

1. Introduction and summary 
The reflexion of internal and/or inertial waves from a smooth bumpy surface 

has been discussed in Baines (1971) (hereafter referred to as I) for the case where 
the wave characteristics (i.e. directions of energy flux) are nowhere tangent to 
the surface. This paper considers the consequences when a wave Characteristic 
is tangent to the surface at  some point (‘steep bump’ topography, in the ter- 
minology of I). 

The analysis is two-dimensional, linear and inviscid, and is based on a radiation 
condition which has the form 

for any wave field F(5) e-iwt, where 6 is a characteristic variable. Equation (1.1) 
is simply a statement that the Fourier transform of P(g) vanishes for negative 
(or positive, depending on appropriate sign) values of its wave-number argu- 
ment. Not all the work of previous authors satisfies equation (l.l),  and for a 
discussion of these the reader is referred to I. This equation has also arisen in other 
contexts of wave propagation but with 5 as a frequency and associated with the 
‘arrow of time’ (Rosenfeld 1961). 
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There are two cases: when the tangential wave characteristic is associated 
with the incident wave there is a region of the surface which is not ‘lit’ by the 
latter (omitting the case of a point of inflexion), and we have diffraction. When 
the tangential characteristic is associated with a reflected wave we have a new 
phenomenon termed ‘ split reflexion ’. The mathematical formulation for the 
determination of the wave field for surfaces which have one of these singular 
points is given in $3.  The analysis is complicated because the equation for the 
surface is not a single-valued function in terms of the characteristic co-ordinates, 
and there are three wave-fields to determine : the back-reflected wave, a reflected 
wave and a second reflected or diffracted wave. In  either case the problem may 
be reduced to a pair of coupled integral equations, one singular and the other 
non-singular, for two unknown functions. Such equations are discussed by Musk- 
helishvili (1946). These equations have been solved for the simplest cases, and 
the properties of the solutions for more general cases are also discussed in $34 
and 5. The results obtained are summarized below. 

For split reflexion (see figure 1) the velocity near the tangential characteristic 
7 = 0 is proportional to ek,(R/l71)~ where 7 is the characteristic co-ordinate 
measured perpendicular to it, ek, is the amplitude of the velocity of the incident 
wave and R is the radius of curvature of the surface at  the tangent point. This 
inverse-square-root singularity in the velocity will be present whenever a radius 
of curvature exists at  the tangent point, and it clearly becomes stronger with 
increasing R. 

For the case of diffraction (see figure 2) the velocity is also singular on the 
tangential characteristic = 0 and in its neighbourhood has the form 

so that the strength of the singularity is independent of the radius of curvature 
(k ,  is the wave-number of the incident wave). For each of the split reflexion and 
diffraction cases, a solution is found for a particularly simple surface shape. 
Solutions for more general topographic shapes will be asymptotic to  these solu- 
tions in the limit of short incident wavelength, i.e. klR 9 1. For the simplest 
surface shape in the diffraction case (and therefore for general shapes in the limit 
klR large), the diffracted wave penetrates the shadow region a distance which is 
of the order of one wavelength of the incident wave. 

It is interesting to compare the above results for diffraction with those of 
Hurley (1970), who has obtained solutions for a sharp-angled wedge by a Green’s 
function method. Hurley’s solutions are singular on all characteristics passing 
through the vertex, and this singularity in the velocity is nearly O(l/lTl&) for 
one range of wedge angles and nearly O(l/l71*) for the other. 

In  $ 6  it  is shown in general that the stream functions for reflected and dif- 
fracted wave fields have the asymptotic form (1/<) e-iwt ( I  <\large) in the direc- 
tions perpendicular to the lines of constant < where < is again the appropriate 
characteristic variable, provided that the surface asymptotes to planes away 
from the bumpy region. 

The ubiquity of the above-mentioned singularity raises questions as to the 
relevance of the linear inviscid theory for split reflexion and diffraction cases. 
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It is clear that such topographic features tend to cause energy density to accumu- 
late, as the energy of the incident wave is converted into components of higher 
wave-number and consequent slower group velocity. Such a concentration of 
energy is likely to enhance non-linear effects, and some experiments by Cacchione 
(1970) and others by the author show this. Viscous effects will also be significant. 
Reflexion in a viscous fluid from a plane boundary was first considered by Phillips 
(1963) who showed that two boundary layers of thickness O(v /w) i  arise, where v 
is the kinematic viscosity. If the slope of the reflected characteristics is very 
close to  that of the boundary, however, the reflected wave is trapped in a bound- 
ary layer of order (v/klm)* (H. P. Greenspan, private communication), in which 
the shears are very large. For the cases of split-reflexion and diffraction considered 
in the present paper, instability and subsequent mixing of the stratified fluid is 
quite plausible if the incident energy flux is sufficiently large. This criterion need 
not be very demanding, and the phenomenon could well have geophysical applica- 
tions. However, if the incident wave is below some threshold in amplitude the 
linear theory should be useful. 

2. Basic equations 
We consider the motion of an incompressible inviscid rotating stratified fluid, 

and take Cartesian axes 2, y, z, z increasing vertically upward, with correspond- 
ing velocity components u, v, w. We take the axis of rotation to be vertical, and 
the linearized equations of motion in the rotating frame are 

au -+fxu=--vp---, 1 P92 
at PO(4 P o ( 4  

v.u = 0, (2.1) 

where po(z) is the equilibrium density, p and p are the perturbation pressure and 
density respectively, d is the unit vector in the direction of z increasing, t is the 
time variable, u is the fluid velocity, g the acceleration due to gravity, and 
f = fd = 2Q where Q is the angular velocity of the system. We next assume that 
the bottom topography and the incident wave motion are independent of the y 
co-ordinate, so that we may define a stream function $(x, z ,  t )  by the equations 

u = -a$laz, w = a$lax. (2.2) 

Equations (2.1) then yield the equation for $ 

where N is the Brunt-VaisBlB frequency defined by 
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If we further assume that all the fluid motion has the time dependence e - i w t ,  

then writing $ = $(x, z )  e-i*t, 

we obtain $ z s - ~ 2 $ z z  = 0, c2 = ( ~ ~ - f ~ ) / ( N ~ - d ) ,  (2.6) 

(2.5) 

where the suffices denote derivatives. In order to have internal and/or inertial 
waves we require c2 > 0, and for the sake of definiteness we will take 

0 < f < w < N ,  

which is the case of greatest relevance for the ocean. We also assume that N2 is 
constant. The conclusions of the following theory will still be valid in cases where 
N 2 ( z )  is not constant, however, provided only that N 2  be effectively constant in 
the regions of the fluid near the bottom topography. With N 2  constant, c2 is 
constant and equation (2.6) has the general solution 

$ = f ( t ) + g ( r L  (2.7) 

where f and g are arbitrary complex-valued functions of the real characteristic 
variables6 = x+cz,  7 = z-cx.  

We consider fluids of effectively infinite depth with a bottom surface or 
topography which has the equation 

2 = h(x), (2.8) 

and assume that this surface has a radius of curvature at  each point. In terms 
of the characteristic variables this equation may be written 

t = - K(11), 11 = - H ( t ) ,  (2-9) 

and for the bottom surfaces to be discussed one of these relations will be double- 
valued. The boundary condition to be satisfied on this surface is 

$ = 0. (2.10) 

An analytical form for the radiation condition appropriate to internal and/or 
inertial waves emanating from a source with a given frequency has been derived 
in I. For a wave field which is a function of one characteristic variable, e.g. 

$ = F(7)  e-iot, (2.11) 

the necessary and sufficient condition for it to be composed of plane waves whose 
phase propagation (and hence, associated energy flux) is in one direction only is 

(2.12) 

where P denotes a principal value integral, and the sign depends on the direction 
of the energy flux. For any particular case, the relevant sign may be determined 
by considering a single plane wave. 

3. Formulation of the reflexion and diffraction problems 
We consider the reflexion of a plane wave from a rigid surface where the wave 

characteristics are such that at  one point one of them is tangent to the surface. 
There are two possible cases, and these will be considered separately. 
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3.1. The  split reJlexion problem 
We consider a plane wave e ei(kl 5-0 incident on topography as shown in figure 1 , 
with the origin at the point where a characteristic is tangent to the surface. We 
denote the reflected wave field by a superposition of 

(3.1) 

$R = eF2(() e-fwt, 

@rr = - eFl(7) eiwt,  E > 0, the wave reflected to  the right, 
= - eF3(y) e-iwt7 6 < 0, the wavereflected to theleft. 

the back-reflected wave, as in I, 

FIUURE 1. Split reflexion topography with reflected wave fields. The latter are shown 
schematically only, and the incident wave is omitted. 

The condition that $ must vanish on the boundary then yields 

and we also have w/9 = P3('I) (7 ' 0). (3.3) 
We assume that at  a large distance from the origin in each direction the surface 
asymptotes to a flat plane, and that there are no other grazing characteristics. 
The appropriate radiation conditions for the above functions then are 

Equations (3.2)-(3.6) then constitute the mathematical problem to be solved, 
given the form of the surface. The latter may be written 

rl = -H.(E), E = - K ~ ' I ) ,  for *Or 6 (' < 0, "3 (3.7) 
'I = -HR(6)? g = - K R ( 7 ) ,  

and each of these functions is monotonic and single-valued. 
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We first consider the nature of the function H(5) near the origin. We denote 
the radius of curvature of the surface at the origin by R. Then simple geometric 
considerations yield that, for Ifl/RI < 1, 

26 cRt 
and similarly R(7) = -sgn(- (1 + C 2 ) t  IrP (1 + 0 ( 7 / W ,  (3.91 

where 17 I denotes the modulus of 7 and sgn 6 the sign of 5. Hence near the origin 
the derivative of K(7)  necessarily has the form 

for any surface satisfying the above conditions. 
From equations (3.7) we next define the function $(C) by the following: 

E ' O : H 2 $ ( 5 ) )  = HR(t-1, 

6 < o : H R ( m )  = HL(5), 

(3.10) 

(3.11) 

so that for any point (5, 7) on the surface, the 7 characteristic will intersect the 
surface at the point ($((), 7). It is readily established from the foregoing equations 
that $(E) has the following properties : 

(3.12) 

$([) represents the degree of asymmetry of the surface about the line 5 = 0, such 
that if the surface is symmetric (in 7) about this line we have 

$45) = -5, (3.13) 
for all [. 

We now obtain a set of equations for F2(C), and to this end define 

(3.14) 

(3.15) 

I F+(5) = B[Y2(5) +F2($(5))1, 
F-(O = W 2 ( 8  - F2($(0)1, 

so that M) = F+(O + ~ - ( 5 ) 5  F2(4(5)) = F+(5) -F-(t). 

Equations (3.2) and (3.5) yield 

where 6' = - KR(q'), and so 
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for ally. Similarly, (3.2) and (3.6) give 

where now f;' = -KL(y l ) ,  and SO 

utilizing (3.3). The integrals are to be construed as Cauchy principal value 
integrals where appropriate. Writing f;' = $(F)  in the second integral of equation 
(3.19), and changing the variable of integration back to &' gives 

for all 7, [utilizing the properties of $(t) as given in equations (3.11), (3.12) and 
writing f;' for r.  Adding equations (3.17) and (3.20) then yields 

Taking y = -HR(&) ,  equations (3.2) give 

Fz(<)+F2($(()) = F~(y)+2ij(y)-(eiklE+eikl$(~)) (6 > O ) ,  (3.22) 

and from equations (3.14), (3.21) we finally obtain 

Two other relations between F+(C) and F-(<) may be obtained from equation 
(3.4). The latter may be written 

(3.25) 

and using equations (3.14) we obtain 

+LP/omF-(5') 27r [ ... + ... + ... + ... lac, 
(3.26) 

... + ... ag. 1 - + L p ( c ) [  ... - ... 
27-r 0 - 

(3.27) 
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Equations (3.23), (3.26) and (3.27) constitute a set of coupled singular integral 
equations to be solved for the functions F+(g) and FJE) in the range 0 < [ < co. 
Equations (3.23) and (3.26) may be added to give a non-singular integral relation 
between F+([) and F-(E), which together with equation (3.27) gives the system in 
its most compact form. Systems of singular integral equations are discussed in 
the book by Muskhelishvili (1946). For present purposes, however, we will merely 
assume that the system under discussion has a unique solution which represents 
the wave fie1d.t Once F,(O is determined, Fl(7) and F3(7) are given by equations 
(3.2) for 7 < 0 and equations (3.3)) (3.21) for 7 > 0. 

In the special case where the surface is symmetric so that $(c) = - 5 equations 
(3.24), (3.26) and (3.27) reduce to  

FIGURE 2. Diffraction topography with reflcctcd a,nd diffracted wavc ficlds. 

3.2. The diffraction p o b l e m  

We next consider a plane wave incident on topography as shown in figure 2,  
with the origin again at the point where a characteristic is tangent to the surface. 
We denote the overall wave-field by a superposition of 

the incident wave, 

(3.29) I @i = EH,(V) e*(k15-wt), 

$R = eF2([) e- iw t ,  

$T = - eF,(q) eciWt, 

~D = 

the back-reflected wave, 
the reflected wave, 

- q) F4([) e-iot, which contains the diffracted wave, 

t It is not possible to determine the question of uniqueness from Mushkelishvili's work 
without specifying the functions H E ( [ )  and q5( 6). However, uniqueness seems intuitively 
plausible on physical grounds, and it is supported by the simple cases discussed below. 
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where He,,(q) denotes the Heaviside step function. The condition that $ must 
vanish on the boundary then yields 

} (5 > O ) ,  (3 .30)  
F,(q) = eik15+F2(5), on 7 = -El(&) (7 > o), 
Fl(9) = F4(5), on T = --WE) (9 < 01, 

and we also have Fa(() = eik1*+F2(5) ( E  > 0 ) .  (3.31) 

Assuming that there are no other points on the surface which have grazing charac- 
teristics, and that the surface is asymptotic to flat planes at  infinity, the statement 
of the problem is completed by the following radiation conditions: 

(3 .32) ,  (3.33),  (3 .34)  

The procedure for reducing this system to a soluble set of equations is analogous 
to that for the preceding case. Near the origin the equation for the surface has 
the form 

T 2 ( 1  + 0(9/W)> 
( 1  + c2)% - 6  = K(7)  = ~ 

Sc2R 

and 

(3 .35)  

(3.36) 

where as before R is the radius of curvature a t  the origin. Again defining the left- 
and right-hand parts of the surface by 

(3 .37)  
9 = -HR(E), 5 = --KR(9) for 9 < 0, 

9 = - H L ( a  t = -KL(T) for 9 > 0, 

we define the function $(9)  by 

(3 .38)  
KR(#(9)) = KL(9) (9 > 01, 

KL($(9)) = KR(9) (7 < O ) ,  

and d(7) clearly has the properties given by equation (3.12).  

(3 .39)  

so that Fl(T) = G+(9) +G-(9), Fl”l((9)) = G+(9) --G-(T). (3.40) 

Equations (3 .30) ,  (3 .31) ,  (3 .32)  yield 

( --oo < 6 < m), 
O0 F ( F )  d5’ 

(3 .41)  
and (3 .30) ,  (3 .31)  and (3 .33)  similarly give 

( --OO < 6 < a), (3 .42)  



122 P .  G. Baines 

where the second integral has been transformed in the same manner as equation 
(3.19). Adding (3.41) and (3.42) gives 

using the relation - - @it. (3.44) 
--OD 5‘-6 

Taking 6 < 0, 5 = - K L ( ~ ) ,  equation (3.43) gives 

Two other relations between G+(q) and GJq) may be obtained from equation 
(3.33)) and these are identical to equations (3.26)) (3.27) with G+, G- replacing 
F+, F- and 7, 7‘ replacing 5, c. The system of equations for G,, G- is therefore 
identical to that for F+) F- in the previous case, with the exception of the inhomo- 
geneous term. F2(t), F4(t) are given in terms of Fl(y) by equations (3.30), (3.31), 
and (3.43) with 5 > 0. 

4. Properties of split reflexion 
We aim to determine the general properties of the wave field on split reflexion 

by investigating the equations for some analytically simple cases. We consider 
f i s t  the simplest case of all, which is 

c1 = (1 + c2)*/8c2R, and $(() = - t, for all 5. The topography is illustrated in 

(4 H ( t )  = c l p  ( -00  < 5 < a). 

figure 3. Equation (3.23) becomes 

and equations (3.28) give 

so that F+(E) = 0, K ( 5 )  = 0 (0 < 6 < 00). 

Hence 

and from equations (3.3), (3.21) for 7 > 0 we have 

4 . 5 )  = 0, 

F2‘2(0 = 0 ( - 03 < t < 00)) 

upon evaluating the integral by conventional methods. The solution is completed 
by using equations (3.2), (3.9)) and so we have 
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This remarkably simple solution indicates what is probably the most significant 
feature of the present analysis, namely that the fluid velocity is proportional to 
k, R*/lq I * near 7 = 0, so that the kinetic energy density is infinite in any volume 
enclosing part of this characteristic. The strength of the singularity in the 

A‘ 
\ 

\ \  

\ ‘  

,j 
/’ 

B B  

\ 
\ 

\ 
\ 

FIGURE 3. Split reflexion, the simplest ease. 

velocity is proportional to k, R4 so that it is stronger for shorter incident wave- 
lengths and larger radii of curvature. Furthermore, this singularity is not 
peculiar to this particular topography, as investigation of the governing equations 
shows that it occurs for virtually every type of topography which has the local 
behaviour given by equation (3.9). This is borne out by the more general example 
considered below. The presence of such a formidable singularity raises questions 
about the stability of such a system, and this has been discussed above. The 
vanishing of the back-reflected wave is a property of this particular surface 
shape: symmetric and parabolic in the characteristic co-ordinates, with slope 
at infinity asymptoting to that of the 6-characteristics. It should also be noted 
that in the WKB limit of short incident wavelength (k,R 9 1) for any smooth 
surface, the solution near the split-reflexion point must be asymptotic to the 
present one. 

The reason for such a strong singularity becomes apparent if one considers 
energy fluxes near the critical point, as shown in figure 3. Since in this case there is 
no back reflexion, the energy flux incident between the lines A ,  A’ (say) must 
be reflected between the lines B, B‘ and C, C‘ so that the incident energy is ‘ com- 
pressed’ or ‘squeezed’ on reflexion and the energy density must be thereby 
increased. This squeezing is most severe near the grazing characteristic BC, and 
accounts for the infinite energy density. The large velocities near BC on the side 
q > 0 are rendered necessary by the dynamics of the system. 

It is also worthwhile to interpret the process in terms of Fourier components. 
We consider how the field of motion is set up - the front of the incident wave 
(generated some large distance away) travels with its group velocity (Bretherton 



124 P .  C. Baines 

1967) apart from some irrelevant forerunners, and on reaching the surface the 
incident energy is reflected in terms of a continuous spectrum of modes, many 
of which have higher wave-numbers. The front of each of these reflected modes 
will also travel with its appropriate group velocity, and for the high wave- 
number modes this is very small, so that the energy density associated with them 
accumulates near the point at  the origin. The process of split reflexion generates 
these high wave-number modes in sufficient quantity so that, as the flow field 
approaches its final state, the energy density in the neighbourhood of the line 
7 = 0 increases without limit. 

For the second example we take 

We now investigate the nature of the solution near the origin and at large dis- 
tances from it. 

For 0 6 fl  < [ E L I ,  equations (3 .26) ,  (3 .27 ) ,  after some manipulation, may be 
written 

(4 .10)  

where a,, bo, . . . , fo depend on the values of F+, F- between ItL] and tR, and a,, b,, 
..., f, depend on the values of F+, F' for t > &. Equation (3.23) gives 
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so that adding to (4.9) gives 

F+(t) = & ~ ( t ) + & ~ ~ + ~ ~ + ( & d ~ + d ~ ) ( ~ ~ 6 ) ~ + ( ~ d ~ + d ~ ) ( k ~ ~ ) ~ +  ... (0 < t <  ( & I ) ,  
(4.12) 

where a,, a; etc. are constants. 
From equation (3.24) we have, for 0 < 5 < 

5~ (eikik'dz eiki5'*/25L - &kit') 

ELI 
2f;' df;' 

gr2 - .g2 
A ( t )  = 

sink1f;'.2f;'df;' +"-s 
277 15Ll e2-tz 

(4.13) 

i sin k, f;' ER (eiki5' - e i k i h  5 ' 1 5 ~  eWiMd (5L 5 ) 

2 t R  tr  - 6% 
""]df ; ' ,  (4.15) 

etc. 
Hence we see that F+(t) is necessarily analytic near 6 = 0, and substituting 

in equation (4.10) shows (after proper consideration of the principal value singu- 
larity) that F-($) is analytic there also.? Hence the back-reflected wave F&) will 
in general be present near 6 = 0 owing to the position and slope of the distant 
parts of the surface, and the velocities associated with it will be finite and con- 
tinuous there. Furthermore, from the nature of the integrals above on which these 
properties depend, it is clear that they extend to most surfaces in general, a pos- 
sible exception being those surfaces which have singularities in their higher 
derivatives at  the origin. (For the example given here, the reflected waves 
would be expected to have discontinuities and singularities in their velocity 
gradients near the points (&, rL), (tR, rR), since the surface has discontinuous 
second derivatives there.) Since the back-reflected wave is necessarily analytic 
near 6 = 0, the F'(r), F3(3(r) waves will still have the (klcllrl)4 singularity at  the 
origin, as in example (a). 

+ A 5 ,  [ F T -  

For 6 9 tR, A(5) may be written in the form 

(4.17) 

t This property is dependent on the fact that the expansion for F+(E) about the origin 
contains only even powers o f f .  
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A similar argument to that given above shows that, for c large, F+(8 and F-([) 
are O(1/kl(<-&)), so that 

(4.18) 

for the example considered. Consequently the reflected waves will asymptote 
to plane waves as expected. 

5. Properties of diffraction 
As for the split reflexion case, we investigate some simple topographies and 

infer the general properties of diffraction of internal/inertial waves from these, 
Again, there is one case which is particularly simple, namely 

(4 X ( 7 )  = C17p (--00 < 7 < a). 

FIGURE 4. Diffraction, the simplest case. 

This topography is illustrated in figure 4, with 

c1 = (1 + c2)+/8c2R, and $(7) = - 7, 

for all 7. Equation (3.46) becomes 

and the equations corresponding to (3.26), (3.27) are 
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Adding the first of these to (5.1) gives 

G+(q) = +e-ikicive (0 < 4 < a), 

so that 

This latter integral may be written 

127 

v plane 

FIUURE 5. The contour for equation (5.8). 

by the Plemelj formulae of complex analysis, and writing 

v = eai"(klcl)4$ (5.7) 

we have G-(y) = 8 e--ikici@' - (5 .8 )  (4 +is)' 
e-v' dv 

and since the integrand approaches zero as /vl+ co in the shaded region in figure 5 
and the pole lies outside it, we have 

e-va dv 
(5.9) G-(q) = + e-ikici? - lim -. 

v - eB"(k,c,)* (4 + is) ' 
i exp {&in(klcdtq} 

- - - e-ikir, "Io et'dt, (5.10) 

using a standard result for complementary error functions (Abramovitz & 

n* 
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Stegun 1965 p. 297, hereafter denoted A & S). Writing t = (&.n)4eiintr, this 

(5.11) 

where C(x)  and X(z) are the Fresnel integrals, as defined in A & S (p. 300). 
Hence, from equations (3.39), we have 

and this is valid for all 7. For 
which yield 

< 0, F2((),  F4([) are given by equations (3.30), 

.. .. 

For f > 0 we have equations (3.31), (3.43), which give 

]. (5.15) 

(5.16) 

F4(!!3 = ... +eiki5, (5.17) 

with G-(r)  given by (5.12). Changing the variable of integration, equation (5.16) 
may be written 

(5.19) 

Equations (5.13)-(5.18) constitute the complete solution to  the wave field, 
and C(x),  X(x) are illustrated in figure 6. First we may note that the back-reflected 
wave F2([) and the 'diffracted ' wave F4(5) are independent of the radius of curva- 
ture R, so that the form of these waves does not depend on whether the surface 
is broad or thin. Second, near the line 6 = 0 both F2(6) and F4(() behave like 
k,1(]6 on each side, so that the singularity in the velocity and energy density 
obtained for split reflexion is present here also, but with its strength dependent 
only on the incident wave-number k,. From equation (5.15) we see that in the 
geometric shadow region the diffracted wave only penetrates a distance Cd of 
the order of 

t d  = 2nlk1, (5.20) 

i.e. one wavelength of the incident wave (A & S, p. 301), and has the form of a 
plane wave travelling in the same direction as the incident wave, modulated by 
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a complex term involving Fresnel integrals. The corresponding part of the 
reflected wave Fl(7), < 0, is only significant near 7 = 0 with a decay distance of 

(5.21) 

Fl(7) has no singular behaviour. As in $4, the above solution will apply for any 
smooth diffracting surface in the limit kl R 1, so that these results have some 
generality. 

0.8 c a x )  

X 

FIGURE 6. The Fresnel integrals C ( x )  and S(z), from Abramovitz 
& %gun (1966, p. 301). 

We may consider the case analogous to case ( b )  of the preceding section, which 
is to take 

(5.22) 1 K ( 7 )  = C l V  (7L < 7 < 7 R L  

= ClrB(27-7R) (7 < 7 R L  

= C17d2rl- 7 L )  (7 ' 7L). 
Precisely the same argument may be made, mutatis mutandi8, and conclusions 
drawn concerning the way in which changes in the 'distant' topography may 
alter Fl(7), F&), and near the origin. The only change is that the function 
A(6) is replaced by e-iklg(?),  which equals e--iklcl)a near the origin. The specific 
conclusions for this case are that, regardless of the slope of the distant topography, 
near the origin F!(q) will be analytic and Fz(6), F4(6) still have the 1/161* singular- 
ity in the velocity and consequent logarithmic singularity in the energy density. 

9 F L M  49 
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6. Asymptotic behaviour of reflected and diffracted wave fields 
If we consider a rigid surface whose slope varies in an arbitrary manner in some 

finite region, but outside of which the surface is effectively plane on either side, 
we may obtain the asymptotic form for the wave field far from the region (i.e. 
far from characteristics which pass through the region) from the radiation con- 
dition, equation (2.12), alone. We consider topography as shown in figure 7 
(for example), and for the back-reflected wave we have 

F I G ~ E  7. An example of localized topography. 

We suppose that F2(t)  i s  only O( 1) for X, < ( < X, when XI, X,, are fixed for given 

&.;I([) -+ 0 as <+-a. topography, and that 

Then for suitable fixed values of a > 0, p > 1, and large so that 

-PIE1 < x, < x, < 6-a < E + a < BlEl, (6-2) 

equation (6.1) may be written 

with an analogous expression for the case when 5 < X,. 
The first term gives the contribution to the integral from the region where 

F&) is largest, and we make the additional, plausible assumption that this term 
contributes to the leading term for F2(t)  when 161 is large. For 5 X ,  or 5 4 XI, 

so that this term indicates that 
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where A is some constant. We must verify that this expression is consistent with 
equation (6.1) itself. Substituting this form for .F&) in the ranges of integration 
outside (XI, X,) gives, to the leading orders for each, 

Hence the above asymptotic form for .F,(E) is self-consistent. If we choose the 
co-ordinate system so that the origin is situated near the centre of the bottom 
variations, we may take XI = - X,, so that 

A z s” 3,(6’)dg. (6.8) 
-XI 

If the wave field approaches a plane wave on either side rather than zero, 
(as is the case for the ‘transmitted ’ wave F,(r) in figure 7), the asymptotic form 
is 

as may readily be seen by considering integrals like 

(6.10) 

The above arguments are applicable for the various wave fields involved in 
split reflexion and diffraction, as in case (b )  for $Q4 and 5, for example (they do 
not, however, apply to case (a)  since the surfaces there do not asymptote to 
planes). The velocity field decays as 1 / 6 2  and the energy density as 1/64;”. 
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